Activated Carbon Supported Mo-Ti-N Binary Transition Metal Nitride as Catalyst for Acetylene Hydrochlorination

نویسندگان

  • Hui Dai
  • Mingyuan Zhu
  • Haiyang Zhang
  • Feng Yu
  • Chao Wang
  • Bin Dai
چکیده

Recently, many scientists have focused on the development of green industrial technology. However, the process of synthesizing vinyl chloride faces the problem of Hg pollution. Via a novel approach, we used two elements Mo and Ti to prepare an inexpensive and green binary transition metal nitride (BTMN) as the active ingredient in a catalyst with nano-sized particles and an excellent degree of activation, which was supported on activated carbon. When the Mo/Ti mole ratio was 3:1, the conversion of acetylene reached 89% and the selectivity exceeded 98.5%. The doping of Ti in Mo-based catalysts reduced the capacity of adsorption for acetylene and also increased the adsorption of hydrogen chloride. Most importantly, the performance of the BTMN excelled those of the individual transition metal nitrides, due to the synergistic activity between Mo and Ti. This will expand the new epoch of the employment of transition metal nitrides as catalysts in the hydrochlorination of acetylene reaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Preparation of Cu-g-C3N4/AC Catalyst for Acetylene Hydrochlorination

A novel catalyst based on g-C3N4/activated carbon was prepared by adding CuCl2. The catalytic performance of the as-prepared catalyst was investigated in the acetylene hydrochlorination reaction. X-ray photoelectron spectroscopy, temperature programmed desorption, low temperature N2 adsorption/desorption (Brunauer–Emmett–Teller), and thermal gravity analysis showed that Cu-g-C3N4/AC significant...

متن کامل

Nitrogen-doped Carbon Derived from ZIF-8 as a High-performance Metal-free Catalyst for Acetylene Hydrochlorination

Acetylene hydrochlorination is a major industrial technology for manufacturing vinyl chloride monomer in regions with abundant coal resources; however, it is plagued by the use of mercury(II) chloride catalyst. The development of a nonmercury catalyst has been extensively explored. Herein, we report a N-doped carbon catalyst derived from ZIF-8 with both high activity and quite good stability. T...

متن کامل

Enhancement of the Stability of Au-Cu/AC Acetylene Hydrochlorination Bimetallic Catalyst with Melamine Treated Support

This paper highlights the experimental and theoretical studies on the Melamine treated Active Carbon (MAC) support for an Au-Cu bimetallic catalyst in acetylene hydrochlorination reaction. Compared to the original Active Carbon (AC) loaded with the same amount of 0.1wt% Au and 1.0wt% Cu,  MAC supported catalyst(MACH), wherein Carbon/C6...

متن کامل

Modifications of the metal and support during the deactivation and regeneration of Au/C catalysts for the hydrochlorination of acetylene

The effect of gold oxidation state and carbon structure on the activity of Au/C catalyst for the hydrochlorination of acetylene was investigated by a combined approach using TPR, XPS and porosimetry determinations. The activity of the catalyst in the synthesis of vinyl chloride monomer was found to be dependent from the presence of Au 3+ species into the catalyst. However, by preparing catalyst...

متن کامل

Trimetallic Au-Cu-La/AC for Acetylene Hydrochlorination in a Multi-Tubular Fixed Bed Reactor

The metal chloride of LaCl3 was chosen to modify the Au-Cu/AC to decrease the noble metal of gold and enhance the catalytic performances. Then a mercury-free catalyst of Au-Cu-La/AC was prepared by the impregnation method, and the fresh Au-Cu-La/AC and Au-Cu/AC catalysts were also characteri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017